Abstract

BackgroundThe phylogenetic position of pycnogonids is a long-standing and controversial issue in arthropod phylogeny. This controversy has recently been rekindled by differences in the conclusions based on neuroanatomical data concerning the chelifore and the patterns of Hox expression. The mitochondrial genome of a sea spider, Nymphon gracile (Pycnogonida, Nymphonidae), was recently reported in an attempt to address this issue. However, N. gracile appears to be a long-branch taxon on the phylogenetic tree and exhibits a number of peculiar features, such as 10 tRNA translocations and even an inversion of several protein-coding genes. Sequences of other pycnogonid mitochondrial genomes are needed if the position of pycnogonids is to be elucidated on this basis.ResultsThe complete mitochondrial genome (15,474 bp) of a sea spider (Achelia bituberculata) belonging to the family Ammotheidae, which combines a number of anatomical features considered plesiomorphic with respect to other pycnogonids, was sequenced and characterized. The genome organization shows the features typical of most metazoan animal genomes (37 tightly-packed genes). The overall gene arrangement is completely identical to the arthropod ground pattern, with one exception: the position of the trnQ gene between the rrnS gene and the control region. Maximum likelihood and Bayesian inference trees inferred from the amino acid sequences of mitochondrial protein-coding genes consistently indicate that the pycnogonids (A. bituberculata and N. gracile) may be closely related to the clade of Acari and Araneae.ConclusionThe complete mitochondrial genome sequence of A. bituberculata (Family Ammotheidae) and the previously-reported partial sequence of Endeis spinosa show the gene arrangement patterns typical of arthropods (Limulus-like), but they differ markedly from that of N. gracile. Phylogenetic analyses based on mitochondrial protein-coding genes showed that Pycnogonida may be authentic arachnids (= aquatic arachnids) within Chelicerata sensu lato, as indicated by the name 'sea spider,' and suggest that the Cormogonida theory – that the pycnogonids are a sister group of all other arthropods – should be rejected. However, in view of the relatively weak node confidence, strand-biased nucleotide composition and long-branch attraction artifact, further more intensive studies seem necessary to resolve the exact position of the pycnogonids.

Highlights

  • The phylogenetic position of pycnogonids is a long-standing and controversial issue in arthropod phylogeny

  • Phylogenetic analyses based on mitochondrial protein-coding genes showed that Pycnogonida may be authentic arachnids (= aquatic arachnids) within Chelicerata sensu lato, as indicated by the name 'sea spider,' and suggest that the Cormogonida theory – that the pycnogonids are a sister group of all other arthropods – should be rejected

  • We present a complete new pycnogonid mitochondrial genome from a sea spider, Achelia bituberculata, belonging to the family Ammotheidae, which combines a number of anatomical features considered plesiomorphic with respect to other pycnogonids

Read more

Summary

Introduction

The phylogenetic position of pycnogonids is a long-standing and controversial issue in arthropod phylogeny. This controversy has recently been rekindled by differences in the conclusions based on neuroanatomical data concerning the chelifore and the patterns of Hox expression. The mitochondrial genome of a sea spider, Nymphon gracile (Pycnogonida, Nymphonidae), was recently reported in an attempt to address this issue. Because of rapid methodological improvements in phylogenetic systematics and related fields such as developmental biology, molecular biology and computational biology (bioinformatics), recent phylogenies have continuously attempted to resolve this issue and have eliminated many of the possible hypotheses, leaving only the two most plausible to be examined: namely that pycnogonids are either a sister group of euchelicerates or a sister group of euarthropods

Methods
Results
Conclusion
Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call