Abstract

The soft-shell clam Mya japonica (Jay, 1857) is a commercially important fishery resource. In this study, we identified the complete mitochondrial genome of M. japonica and performed a phylogenetic analysis to explore its genetic relationship with Mya arenaria. The genome is 21,396 bp in length and contains 13 protein-coding genes (PCGs), 23 transfer RNA genes (tRNAs), 2 ribosomal RNA genes (rRNAs), and 5 D-Loop control regions. The atp8 gene was annotated in Myidae for the first time. Notably, the genome contains an additional trnM, consistent with M. arenaria. The length of the cox2 gene is 1,947 bp, which is 513 bp longer than that in M. arenaria. Its base composition is 29.14% A, 37.26% T, 10.89% C, and 22.71% G. Phylogenetic analysis based on 12 PCGs and 2 rRNAs indicates that M. japonica and M. arenaria form a sister group. In this study, the identification and phylogenetic analysis of the complete mitochondrial genome of M. japonica provide significant information for future taxonomic and evolutionary research of the genus Mya.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call