Abstract

Insect mitochondrial genome (mitogenome) are the most extensively used genetic information for molecular evolution, phylogenetics and population genetics. Pentatomomorpha (>14,000 species) is the second largest infraorder of Heteroptera and of great economic importance. To better understand the diversity and phylogeny within Pentatomomorpha, we sequenced and annotated the complete mitogenome of Corizus tetraspilus (Hemiptera: Rhopalidae), an important pest of alfalfa in China. We analyzed the main features of the C. tetraspilus mitogenome, and provided a comparative analysis with four other Coreoidea species. Our results reveal that gene content, gene arrangement, nucleotide composition, codon usage, rRNA structures and sequences of mitochondrial transcription termination factor are conserved in Coreoidea. Comparative analysis shows that different protein-coding genes have been subject to different evolutionary rates correlated with the G+C content. All the transfer RNA genes found in Coreoidea have the typical clover leaf secondary structure, except for trnS1 (AGN) which lacks the dihydrouridine (DHU) arm and possesses a unusual anticodon stem (9 bp vs. the normal 5 bp). The control regions (CRs) among Coreoidea are highly variable in size, of which the CR of C. tetraspilus is the smallest (440 bp), making the C. tetraspilus mitogenome the smallest (14,989 bp) within all completely sequenced Coreoidea mitogenomes. No conserved motifs are found in the CRs of Coreoidea. In addition, the A+T content (60.68%) of the CR of C. tetraspilus is much lower than that of the entire mitogenome (74.88%), and is lowest among Coreoidea. Phylogenetic analyses based on mitogenomic data support the monophyly of each superfamily within Pentatomomorpha, and recognize a phylogenetic relationship of (Aradoidea + (Pentatomoidea + (Lygaeoidea + (Pyrrhocoroidea + Coreoidea)))).

Highlights

  • The insect mitochondrial genome is a circular double-strand molecule of 15–18 kb in size and usually codes for 37 genes: 13 protein-coding genes (PCGs), two ribosomal RNA genes, and 22 transfer RNA genes [1, 2]

  • Due to its maternal inheritance, relatively rapid evolutionary rate, and lack of genetic recombination, mitogenome sequences have been extensively used in the study of molecular evolution, phylogenetics, phylogeography and population genetics [2, 9,10,11]

  • We analyzed the main features of C. tetraspilus mitogenome, including nucleotide composition, codon usage, ribosomal RNA genes (rRNAs) structures and evolutionary pattern of PCGs, and provided a comparative analysis with four other Coreoidea species

Read more

Summary

Introduction

The insect mitochondrial genome (mitogenome) is a circular double-strand molecule of 15–18 kb in size and usually codes for 37 genes: 13 protein-coding genes (PCGs), two ribosomal RNA genes (rRNAs), and 22 transfer RNA genes (tRNAs) [1, 2]. We analyzed the main features of C. tetraspilus mitogenome, including nucleotide composition, codon usage, rRNA structures and evolutionary pattern of PCGs, and provided a comparative analysis with four other Coreoidea species. To investigate the phylogenetic relationships among the superfamilies of Pentatomomorpha, we performed phylogenetic analyses with Bayesian inference (BI) and maximum likelihood (ML) methods using the concatenated nucleotide sequences of 13 mitochondrial PCGs and 24 RNA genes.

Results
Conclusion
Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.