Abstract

The first reported Far East scarlet-like fever (FESLF) epidemic swept the Pacific coastal region of Russia in the late 1950s. Symptoms of the severe infection included erythematous skin rash and desquamation, exanthema, hyperhemic tongue, and a toxic shock syndrome. The term FESLF was coined for the infection because it shares clinical presentations with scarlet fever caused by group A streptococci. The causative agent was later identified as Yersinia pseudotuberculosis, although the range of morbidities was vastly different from classical pseudotuberculosis symptoms. To understand the origin and emergence of the peculiar clinical features of FESLF, we have sequenced the genome of the FESLF-causing strain Y. pseudotuberculosis IP31758 and compared it with that of another Y. pseudotuberculosis strain, IP32953, which causes classical gastrointestinal symptoms. The unique gene pool of Y pseudotuberculosis IP31758 accounts for more than 260 strain-specific genes and introduces individual physiological capabilities and virulence determinants, with a significant proportion horizontally acquired that likely originated from Enterobacteriaceae and other soil-dwelling bacteria that persist in the same ecological niche. The mobile genome pool includes two novel plasmids phylogenetically unrelated to all currently reported Yersinia plasmids. An icm/dot type IVB secretion system, shared only with the intracellular persisting pathogens of the order Legionellales, was found on the larger plasmid and could contribute to scarlatinoid fever symptoms in patients due to the introduction of immunomodulatory and immunosuppressive capabilities. We determined the common and unique traits resulting from genome evolution and speciation within the genus Yersinia and drew a more accurate species border between Y. pseudotuberculosis and Y. pestis. In contrast to the lack of genetic diversity observed in the evolutionary young descending Y. pestis lineage, the population genetics of Y. pseudotuberculosis is more heterogenous. Both Y. pseudotuberculosis strains IP31758 and the previously sequenced Y. pseudotuberculosis strain IP32953 have evolved by the acquisition of specific plasmids and by the horizontal acquisition and incorporation of different genetic information into the chromosome, which all together or independently seems to potentially impact the phenotypic adaptation of these two strains.

Highlights

  • Yersinia pseudotuberculosis is a bacterial pathogen that, with Y. pestis and Y. enterocolitica, causes worldwide infections in humans [1,2,3,4]

  • We have analyzed the genome sequence of a Y. pseudotuberculosis isolate responsible for Far East scarlet-like fever (FESLF)

  • FESLF leads to severe clinical manifestations, including scarlet-like skin rash, from which this illness gets its name, and, most importantly, a toxic shock syndrome not seen in common pseudotuberculosis infections

Read more

Summary

Introduction

Yersinia pseudotuberculosis is a bacterial pathogen that, with Y. pestis and Y. enterocolitica, causes worldwide infections in humans [1,2,3,4]. In 1959, an epidemic of Y. pseudotuberculosis infections on the Pacific coast of Russia was called Far East scarlet-like fever (FESLF), or scarlatinoid fever [10,11,12,13,14,15,16,17] for its clinical similarities to scarlet fever caused by group A streptococci [18,19]. Such atypical infections in Far East Asia are severe, and the clinical presentation includes erythematous skin rash, skin

Objectives
Methods
Findings
Conclusion
Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.