Abstract

Banana streak virus (BSV) belongs to the members of the genus Badnavirus, family Caulimoviridae. At present, BSV contains nine species in the International Committee on Taxonomy of Viruses (ICTV) classification report (2018b release). Previous study indicated that the viral particles of Banana streak virus Acuminata Yunnan (BSV-Acum) were purified from banana (Cavendish Musa AAA group) leaves in Yunnan Province, China, and its complete genome was obtained. To further determine whether this sample infecting with Banana streak GF virus (BSGFV), the polymerase chain reaction (PCR) cloning and complete genome analysis of the Banana streak GF virus Yunnan isolate (BSGFV-YN) isolate were carried out in this study. The result showed that BSGFV-YN infecting Cavendish Musa AAA group was co-infecting this sample. Its genome contains a total of 7,325 bp in length with 42% GC content. This complete genome sequence was deposited in GenBank under accession number MN296502. Sequence analysis showed that the complete genome of BSGFV-YN was 98.14% sequence similarity to BSGFV Goldfinger, while it was 49.10–57.09% to other BSV species. Two phylogenetic trees based on the complete genome and ORFIII polyprotein indicated that BSGFV-YN and other BSV species clustered into a group, while it was the highest homology with BSGFV Goldfinger. Although BSGFV-YN and BSGFV Goldfinger were highly homologous, their cultivating bananas are different. The former cultivating banana was from Cavendish Musa AAA group, while the latter cultivating banana was from Goldfinger Musa AAAB group. Compared with BSGFV Goldfinger, the genome of BSGFV-YN has an extra multiple repetitive sequences in the intergenetic region between ORFIII and ORFI, suggesting that this region might be related to host selection. In summary, a BSGFV-YN distant from BSV-Acum was identified from the same sample, and its complete genome sequence was determined and analyzed. The study extends the polymorphism of BSVs in China and provides scientific clue for the evolutionary relationship with host selection of badnaviruses.

Highlights

  • Banana (Musa spp.), a perennial monocotyledonous herb, is the fourth largest food crops and the third largest tropical fruit in the world

  • To obtain the complete genome sequence of Banana streak GF virus (BSGFV)-YN, 7 specific pair primers were used for segmental polymerase chain reaction (PCR) amplification (Fig. 1A)

  • The results showed that BSGFV-YN and other Banana streak virus (BSV) species formed to two branches

Read more

Summary

Introduction

Banana (Musa spp.), a perennial monocotyledonous herb, is the fourth largest food crops and the third largest tropical fruit in the world. Bananas are susceptible to variety of viruses (Gaur et al, 2016), such as Banana streak virus (BSV) (Geering, Parry & Thomas, 2011), Banana bunchy top virus (BBTV) (Yu et al, 2012) and Cucumber mosaic virus (CMV) (Khaled, Wardany & Mahmoud, 2016). Banana production is threatened by the Banana streak disease (BSD), and its pathogen belongs to the genus Badnavirus, family Caulimoviridae (Alangar, Thomas & Ramasamy, 2016). BSV genome may integrate into the banana genome, and it can be activated to produce infectious virions under certain environmental stress (Gayral et al, 2008; Côte et al, 2010). BSV possesses an open-circular double-stranded DNA genome of 7–8 kb in size and its genome is encapsidated inside non-enveloped bacilliform particle (30 nm × 150 nm) (Selvarajan, Balasubramanian & Gayathrie, 2016; Alangar, Thomas & Ramasamy, 2016)

Results
Discussion
Conclusion
Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call