Abstract

Caldesia is a genus in the family Alismataceae mainly found in the tropical and temperate regions of the Northern hemisphere. In China, two species, Caldesia parnassifolia, and Caldesia grandis are recorded as critically endangered in sporadic regions. Available protection of the genetic resource of these threatened species has been impeded due to limited genomic information. Here, we sequence the whole chloroplast (cp) genome of the two Caldesia species using high throughput sequencing technology. The whole cp genomes of C. parnassifolia and C. grandis were 167,647bp and 168,500bp, respectively with a typical quadripartite structure. There were 115 unique genes with 81 protein-coding genes, 31 tRNA genes, and four rRNA genes. Both species showed a GC content of 37.1%. A duplication of two tRNA genes and a ~ 6kb inversion region in the LSC was noted in both species. Mononucleotide simple sequence repeats (SSRs) A/T were most abundant for both Caldesia species. High nucleotide variability was recorded in ycf1 gene and trnK-UUU/rps16 intergenic spacer region. All RNA editing conversions were C-U in 23 and 24 protein-coding genes for C. parnassifolia and C. grandis, respectively. Phylogenetic analysis placed both Caldesia species as sister to Sagittaria lichuanensis. This study will be useful for further evolutionary, systematic researches and conservation of the genus Caldesia.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call