Abstract

Previous studies of Veronica and related genera were weakly supported by molecular and paraphyletic taxa. Here, we report the complete chloroplast genome sequence of Veronica nakaiana and the related species Veronica persica and Veronicastrum sibiricum. The chloroplast genome length of V. nakaiana, V. persica, and V. sibiricum ranged from 150,198 bp to 152,930 bp. A total of 112 genes comprising 79 protein coding genes, 29 tRNA genes, and 4 rRNA genes were observed in three chloroplast genomes. The total number of SSRs was 48, 51, and 53 in V. nakaiana, V. persica, and V. sibiricum, respectively. Two SSRs (10 bp of AT and 12 bp of AATA) were observed in the same regions (rpoC2 and ndhD) in three chloroplast genomes. A comparison of coding genes and non-coding regions between V. nakaiana and V. persica revealed divergent sites, with the greatest variation occurring petD-rpoA region. The complete chloroplast genome sequence information regarding the three Veroniceae will be helpful for elucidating Veroniceae phylogenetic relationships.

Highlights

  • Chloroplast are photosynthetic organelles that provide energy to green plants (Douglas, 1990)

  • Chloroplast genomes consist of a large inverted repeat (IR) separated by a large single-copy (LSC) region and a small single-copy (SSC) region

  • 100–130 genes are located along the circular genome structure of chloroplasts

Read more

Summary

Introduction

Chloroplast (cp) are photosynthetic organelles that provide energy to green plants (Douglas, 1990). Chloroplast genomes are valuable sources of phylogenetic information because of their relatively stable genome structure and higher evolutionary rate relative to mitochondrial genomes. 100–130 genes are located along the circular genome structure of chloroplasts. These genes exhibit a highly conserved gene order and contests (Wicke et al, 2011) and typically encode ∼79 proteins, ∼30 transfer RNAs and four ribosomal RNAs. some parasitic plants contain fewer genes than photosynthetic plants (Funk et al, 2007; Wicke et al, 2013). Cp genome sequences are useful genetic markers for DNA barcoding, transplastomic studies and evolutionary studies from the population level, as well as for phylogenetic relationships (Bock and Khan, 2004; Jansen et al, 2007)

Objectives
Methods
Findings
Conclusion
Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call