Abstract

BackgroundThe chloroplast (cp) genome is useful in plant systematics, genetic diversity analysis, molecular identification and divergence dating. The genus Gentiana contains 362 species, but there are only two valuable complete cp genomes. The purpose of this study is to report the characterization of complete cp genome of G. lawrencei var. farreri, which is endemic to the Qinghai-Tibetan Plateau (QTP).MethodsUsing high throughput sequencing technology, we got the complete nucleotide sequence of the G. lawrencei var. farreri cp genome. The comparison analysis including genome difference and gene divergence was performed with its congeneric species G. straminea. The simple sequence repeats (SSRs) and phylogenetics were studied as well.ResultsThe cp genome of G. lawrencei var. farreri is a circular molecule of 138,750 bp, containing a pair of 24,653 bp inverted repeats which are separated by small and large single-copy regions of 11,365 and 78,082 bp, respectively. The cp genome contains 130 known genes, including 85 protein coding genes (PCGs), eight ribosomal RNA genes and 37 tRNA genes. Comparative analyses indicated that G. lawrencei var. farreri is 10,241 bp shorter than its congeneric species G. straminea. Four large gaps were detected that are responsible for 85% of the total sequence loss. Further detailed analyses revealed that 10 PCGs were included in the four gaps that encode nine NADH dehydrogenase subunits. The cp gene content, order and orientation are similar to those of its congeneric species, but with some variation among the PCGs. Three genes, ndhB, ndhF and clpP, have high nonsynonymous to synonymous values. There are 34 SSRs in the G. lawrencei var. farreri cp genome, of which 25 are mononucleotide repeats: no dinucleotide repeats were detected. Comparison with the G. straminea cp genome indicated that five SSRs have length polymorphisms and 23 SSRs are species-specific. The phylogenetic analysis of 48 PCGs from 12 Gentianales taxa cp genomes clearly identified three clades, which indicated the potential of cp genomes in phylogenetics.DiscussionThe “missing” sequence of G. lawrencei var. farreri mainly consistent of ndh genes which could be dispensable under chilling-stressed conditions in the QTP. The complete cp genome sequence of G. lawrencei var. farreri provides intragenic information that will contribute to genetic and phylogenetic research in the Gentianaceae.

Highlights

  • The chloroplast is the photosynthetic organelle that provides essential energy for plants, and is hypothesized to have arisen from ancient endosymbiotic cyanobacteria (Neuhaus & Emes, 2000)

  • The cp genome of G. lawrencei var. farreri contains 130 genes, including 85 protein coding genes (PCGs) accounting for 66,215 bp, and 37 tRNA and eight rRNA genes accounting for 11,781 bp

  • Most genes are present as a single copy, while all the rRNA genes and some of the tRNA and PCGs in the inverted repeats (IRs) occur as double copies

Read more

Summary

Introduction

The chloroplast (cp) is the photosynthetic organelle that provides essential energy for plants, and is hypothesized to have arisen from ancient endosymbiotic cyanobacteria (Neuhaus & Emes, 2000). The cp genome is useful in plant systematics research because of its maternal inheritance, haploid nature and highly conserved structures. It is widely used in the study of genetic diversity, molecular identification, phylogenetic classification and divergence dating (Shaw et al, 2007; Nikiforova et al, 2013; Carbonell-Caballero et al, 2015; Williams et al, 2016). The comparison analysis including genome difference and gene divergence was performed with its congeneric species G. straminea. Farreri is a circular molecule of 138,750 bp, containing a pair of 24,653 bp inverted repeats which are separated by small and large single-copy regions of 11,365 and 78,082 bp, respectively. The complete cp genome sequence of G. lawrencei var. The complete cp genome sequence of G. lawrencei var. farreri provides intragenic information that will contribute to genetic and phylogenetic research in the Gentianaceae

Objectives
Methods
Results
Conclusion
Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call