Abstract

Humic acid (HA) is of great importance in controlling the fate of heavy metals (HMs), however, the pivotal influence of HA aggregation within the HA-clay-HM ternary system on retarding HM mobility remains obscure. This study performed molecular dynamics simulations to delve into the consequences of HA aggregation on the environmental behavior of Cd2+ and Pb2+ (0.1–0.6 M) in the co-existence of illite particles. HA can readily aggregate into clusters, adhering to the illite surface or freely dispersing in the solution. These HA clusters significantly modulate HM mobility, contingent upon their location, arrangement, and interaction with illite. Consequently, HA exhibited a pronounced retardation effect on HM migration, stemming from the competition between HA aggregation and its adsorption on illite. Additionally, the retardation effect of HA aggregation was more obvious for Cd2+ (as compared to Pb2+), owing to its stronger interaction with the functional groups of HA. These findings contribute to the development of potential HA-based strategies for remediation of heavy metal-contaminated sites.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.