Abstract

In this paper, we performed an NPT molecular dynamics simulation of crystallization process of HCP-Mg to probe the competition between densification and structural ordering. Two opposite layering patterns, i.e. outward and inward, were designed for analysis. From the perspective of solid-like cluster (SLC) itself, structural ordering always precedes densification; but from the perspective of SLC’s precursor, structural ordering always lags behind densification; the reversion occurs at the closest two liquid layers around SLC. We call it dip-rebound phenomenon. This phenomenon is a completely new finding. It resolves, to some extent, recent debate about whether densification or structural ordering triggers crystallization.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.