Abstract

It is Common Practice for Polymer-Metal Interfaces, Frequently Encountered in Microelec-Tronic Devices, to Improve Adhesion by Surface Roughening or Micro-Patterning. the Competitionbetween Adhesive Fracture and Cohesive Fracture in the Vicinity of a Patterned Interface, i.e., Inter-Face Crack Deflection, is One of these Key Mechanisms that Contribute Significantly to the Macroscopicadhesion. in this Paper, these Fracture Phenomena are Described Simultaneously by Cohesive Zoneelements with an Exponential Traction-Separation Law (TSL) for the Adhesive Failure and an Initiallyrigid, Exponentially Decaying, TSL for the Cohesive Failure. it is Demonstrated that the Conditions Atwhich Crack Kinking Occurs are Dominated by Fracture Strength Values as Opposed to the Commonlyused Fracture Toughness Values. Experimental Verification is Performed by Means of Four Point Bend-Ing Tests on Specifically Designed Micro-Patterned Polymer-Metal Samples.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.