Abstract

In this paper we discuss the main petrogenetic models for granitic pegmatites and how these models have evolved over time. We suggest that the present state of knowledge requires that some aspects of these models to be modified, or absorbed into newer ones. Pegmatite formation and internal evolution have long supposed the need for highly water- and flux-enriched magmas to explain the differences between pegmatites and other intrusives of similar major element composition. Compositions and textural characteristics of fluid and melt inclusions in pegmatite minerals provide strong evidence for such magmas. Furthermore, we show that melt inclusion research has increased the number of potential flux components, which may include H2O, OH−, CO2, HCO 3 − , CO 3 2− , SO 4 2− , PO 4 3− , H3BO3, F , and Cl, as well as the elements Li, Na, K, Rb, Cs, and Be, herein described as melt structure modifiers. In this paper we emphasize that the combined effect which these components have on the properties of pegmatite melts is difficult to deduce from experimental studies using only a limited number of these components. The combination and the amount of the different magmatic species, together with differences in the source region, and variations in pressure and temperature cause the great diversity of the pegmatites observed. Some volatile species, such as CO 3 2− and alkalis, have the capacity to increase the solubility of H2O in silicate melt to an extraordinary degree, to the extent that melt-melt-fluid immiscibility becomes inevitable. It is our view that the formation of pegmatites is connected with the complex interplay of many factors.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call