Abstract

The transmembrane potential of voltage-clamped squid giant axon is increased to compensate for a reduction in the rate of potassium channel kinetics when artificial seawater with trivalent erbium ion is substituted for artificial seawater. The additional potential required to produce an equivalent rise time is a measure of the potential shift produced by the erbium ions. When the kinetics of K+ channels are matched in this manner, the maximal K+ currents are larger for the larger transmembrane potential. This observation requires a functional separation of the open K+ channel and the voltage sensor for the gating mechanism of this channel.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call