Abstract

The aim of this paper is to examine compensating for the hysteresis error of silicon pressure sensor in order to improve the sensor accuracy. The object of investigation is large-range diffused silicon piezoresistive pressure sensors in the industrial field, based on MEMS technology. Due to the complex hysteresis characteristic of the sensor and difficulties in compensation, there are currently no published precedents in relevant studies. The author has analyzed the causation and impacting factors of the hysteresis characteristic and demonstrated, through experiment, that the silicon pressure sensor does satisfy the necessary and sufficient conditions of the general Preisach model. Through utilizing the Preisach model of the sensor and compensating for the hysteresis error using the compensation algorithm on inverse general Preisach model, the experiment has demonstrated that the hysteresis error decreases significantly after compensation, hence enhancing the precision of the sensors.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call