Abstract

The compass identity (Wynn's five point star identity) for Pade approximants connects neighbouring elements called N, S, E, W and C in the Pade table. Its form has been extended to the cases of rational interpolation of ordinary (scalar) data and interpolation of vector-valued data. In this paper, full specifications of the associated five point identity for the scalar denominator polynomials and the vector numerator polynomials of the vector-valued rational interpolants on real data points are given, as well as the related generalisations of Frobenius' identities. Unique minimal forms of the polynomials constituting the interpolants and results about unattainable points correspond closely to their counterparts in the scalar case.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.