Abstract

Gasification technology, which converts fossil fuels into either combustible gas or synthesis gas (syngas) for subsequent utilization, offers the potential of both clean power and chemicals. Especially, IGCC is recognized as next power generation technology which can replace conventional coal power plants in the near future. It produces not only power but also chemical energy sources such as H2, DME and other chemicals with simultaneous reduction of CO2. This study is focused on the determination of operating conditions for a 300 MW scale IGCC plant with various feedstocks through ASPEN plus simulator. The input materials of gasification are chosen as 4 representative cases of pulverized dry coal (Illinois#6), coal water slurry, bunker-C and naphtha. The gasifier model reflects on the reactivity among the components of syngas in the gasification process through the comparison of syngas composition from a real gasifier. For evaluating the performance of a gasification plant from developed models, simulation results were compared with a real commercial plant through approximation of relative error between real operating data and simulation results. The results were then checked for operating characteristics of each unit process such as gasification, ash removal, acid gas (CO2, H2S) removal and power islands. To evaluate the performance of the developed model, evaluated parameters are chosen as cold gas efficiency and carbon conversion for the gasifier, power output and efficiency of combined cycle. According to simulation results, pulverized dry coal which has 40.93% of plant net efficiency has relatively superiority over the other cases such as 33.45% of coal water slurry, 35.43% of bunker-C and 30.81% of naphtha for generating power in the range of equivalent 300 MW.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.