Abstract
Abstract The Triboelectric nanogenerators (TENGs) are Fabricated by contact between two surfaces of different materials and convert of electric loads between them. In such structures, the two contacting layers should be radically different in terms of their electric property so that one of the layers could induce positive electrical charge while the other induces a negative charge. The application of force on and friction between the two layers induce positive and negative charges. Through the electrodes in external load, the electrical charges flow as electric current. In the present study, TEGN structures fabricated of polyethylene terephthalate polymers (PET) act as electron acceptor while Polyamide (KAPTON) and polydimethylsiloxane (PDMS) act as electron donator. The resulting outputs are compared consequently. Considering the fact that the two materials are relatively identical in terms of electron donation as they are in contact with PET, the generators fabricated of KAPTON could generate 400% more power under identical conditions. Therefore, one may conclude that KAPTON could be more suitable for development of self-power system as they are more available and more environmentally compatible.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.