Abstract

The task of laser sensing of droplet clouds by coaxial lidar is considered. Lidar return due to single scattering is formed in the volume bounded by the radiation pattern of the transmitter, while the double-scattering is determined by a receiving system field of view. The volume of the scattering medium exceeding a receiving system field of view forms the signal higher scattering orders ( > 2). The results of the numerical modeling of the distribution (in the recording plane) polarization characteristics of lidar signal from droplet clouds in the double scattering approximation in comparison with the results of the physical model experiment simulating sounding of a droplet cloud are discussed in this paper.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.