Abstract
This paper presents a comparison of the darkest pixel (DP) and empirical line (EL) atmospheric correction methods in order to examine their effectiveness to retrieve aerosol optical thickness (AOT) using the radiative transfer (RT) equations. Research has found that the DP and the EL methods are the two simplest and most effective methods of atmospheric correction; however, which of the two atmospheric correction methods is more effective in deriving accurate AOT values remains an open question. The accuracy of the DP and EL atmospheric correction methods were examined using pseudo-invariant targets in the urban area of Limassol in Cyprus, by using reflectance values before and after atmospheric correction. Eleven Landsat 5 and Landsat 7 satellite images were atmospherically corrected using both the DP and EL methods. The reflectance values following the DP and EL method of atmospheric correction were used in the radiative transfer equation to derive the AOT values. Following, an accuracy assessment was conducted comparing the in-situ AOT values as measured from sun photometers with the AOT values derived from the RT equations in order to determine the effectiveness of the DP and EL methods for retrieving AOT. The study found that the EL atmospheric correction method provided more accurate AOT values than the DP method.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.