Abstract

Sensor networks have emerged as an interesting and important research area in the last few years. These networks require that time be synchronized more precisely than in traditional Internet applications. In this paper, we compared and analyzed the performance of the RBS and TDP mechanisms in the view of the number of generated messages and the synchronization accuracy. The reason that we chose be RBS ad the TDP mechanism to be compared is because the RES is an innovative method to achieve the high accurate synchronization. And TDP is a new method taking over the NTP method which has been used widely in the Internet. We simulated the performance of two methods assuming the IEEE 802.11 CSMA/CA MAC. As for the number of nodes in the sensor networks, two situations of 25 (for the small size network) and 100 (for the large size network) nodes are used. In the aspect of the number of messages generated for the synchronization, TDP is far better than RBS. But, the synchronization accuracy of RBS is far higher than that of TDP. We cm conclude that in a small size sensor networks requiring very high accuracy, such as an application of very high speed objects tracking in a confined space, the RBS is more proper than TDP even though the RBS may generate more traffic than TDP. But, in a wide range sensor networks with a large number of nodes, TDP is more realistic though the accuracy is somewhat worse than RBS because RBS may make so many synchronization messages, and then consume more energies at each node. So, two mechanisms may be used selectively according to the required environments, without saying that the one method is always better than the other.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.