Abstract
Traumatic injury to the brain is one of the leading causes of injury-related death or disability, but current therapies are limited. Previously it has been shown that the antioxidant proteins metallothioneins (MTs) are potent neuroprotective factors in animal models of brain injury. The exogenous administration of MTs causes effects consistent with the roles proposed from studies in knock-out mice. We herewith report the results comparing full mouse MT-1 with the independent alpha and beta domains, alone or together, in a cryoinjury model. The lesion of the cortex caused the mice to perform worse in the horizontal ladder beam and the rota-rod tests; all the proteins showed a modest effect in the former test, while only full MT-1 improved the performance of animals in the rota-rod, and the alpha domain showed a rather detrimental effect. Gene expression analysis by RNA protection assay demonstrated that all proteins may alter the expression of host-response genes such as GFAP, Mac1 and ICAM, in some cases being the beta domain more effective than the alpha domain or even the full MT-1. A MT-1-to-MT-3 mutation blunted some but not all the effects caused by the normal MT-1, and in some cases increased its potency. Thus, splitting the two MT-1 domains do not seem to eliminate all MT functions but certainly modifies them, and different motifs seem to be present in the protein underlying such functions.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.