Abstract

This study aimed to evaluate the fatty acid composition, including the contents, of conjugated linoleic acid cis9trans11 C18:2 (CLA) and trans C18:1 and C18:2 isomers in hard cow, sheep, and goat cheeses found on the Polish market and to compare lipid quality indices in these cheeses. The gas chromatography method was used to determine the fatty acid profile. The study demonstrated various contents of cis9trans 11 C18:2 (CLA), trans C18:1, and C18:2 isomers and the values of lipid quality indices in the cheeses. Sheep and goat cheeses were richer sources of short-chain fatty acids (SCFA) (14.73 ± 2.55% and 14.80 ± 2.80%, respectively) than the cow cheeses (9.38 ± 0.87%). The cow cheeses had a significantly higher (p < 0.05) content of monounsaturated fatty acids (MUFA), the lowest n-6/n-3 ratio, and the highest content of fatty acids, inducing a desirable dietary effect in humans (DFA) compared to the sheep and goat cheeses. Significantly higher (p < 0.05) contents of polyunsaturated fatty acids (PUFA) were found in sheep cheeses. Goat cheeses had the highest n-3 PUFA content and the lowest values of the thrombogenicity index (TI) (2.67 ± 0.44) compared to the sheep and cow cheeses (3.14 ± 0.29 and 3.13 ± 0.13, respectively). The cow, sheep, and goat cheeses were characterized by similar values of the hypocholesterolemic/hypercholesterolemic (H/H) ratio. Sheep cheeses had the highest levels of cis9trans11 C18:2 (CLA) and the highest total content of trans C18:1 and trans C18:2 isomers. The research showed that sheep, cow, and goat cheeses offered various health benefits. The differences in fatty acid composition and the different values of the lipid quality indices found in the cheeses may be due to differences in both the composition of milk used to produce them and the cheese-making technology. Studies conducted by many authors have indicated that the feeding system of the ruminants has a significant impact on the quality and chemical composition of milk, as well as its applicability for cheese production.

Highlights

  • Milk is a good source of high-value proteins, digestible fat, mineral salts important for the body, a number of vitamins, and other ingredients [1]

  • Studies conducted by many authors have indicated that the feeding system of the ruminants has a significant impact on the quality and chemical composition of milk, as well as its applicability for cheese production

  • The fatty acid composition of fat extracted from the cow, sheep, and goat cheeses is presented in contents of these acids (56.61 ± 1.95%) than cow cheeses (59.41 ± 0.91%)

Read more

Summary

Introduction

Milk is a good source of high-value proteins, digestible fat, mineral salts important for the body, a number of vitamins, and other ingredients [1]. It is secreted by the mammary gland of all mammals and contains the same nutrients, differing only in their proportions [2]. Milk fat is one of the most complex natural fats It contains over 400 fatty acids with a different number of carbon atoms (including the even and the odd number) and, of various degrees of saturation: saturated (SFA), monounsaturated (MUFA), and polyunsaturated (PUFA), with cis and trans configuration and straight or branched carbon chains [3,4]. According to Praagmana et al [8], Foods 2020, 9, 1667; doi:10.3390/foods9111667 www.mdpi.com/journal/foods

Objectives
Methods
Results
Conclusion
Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call