Abstract

Background: Tooth decay and periodontal disease are the most common chronic human and oral diseases, respectively, and bacterial plaque has a major role in their occurrence. Because of the importance of plaque control, this study was done to compare the antimicrobial effects of Nigella sativa nanoparticles and chlorhexidine emulsion on the most common dental cariogenicic bacteria. Methods: In this experimental study, the effects of 0.2% chlorhexidine mouthwash and Nigella sativa nanoparticle with different dilutions on Streptococcus mutans, Streptococcus sobrinus, Streptococcus salivarius, Lactobacillus acidophilus, Minococcal fecalis, and Enterococcus fecalis were compared using minimum inhibitory concentration (MIC) and minimum bactericidal concentration (MBC) assessment. Data were analyzed by SPSS Version 16.0 software, and statistical tests, including an independent sample t test. Results: Mean diameters of growth inhibition zone because of the nanoemulsion of Nigella sativa nanoparticle was close to each other in different bacteria (p=0.665). In addition, there was no significant difference between these values because of different dilutions of nanoemulsion even in different microbial species (p=0.778). The MIC and lethal concentrations of Nigella sativa nanoemulsion were similar for Enterococcus faecalis and Streptococcus mutans, and it was higher than other bacteria. In comparison, the MIC and MBC values of all bacteria in chlorhexidine were lower than those of the nanoemulsion. Conclusion: MIC and MBC values showed that Nigella sativa nanoemulsion affects tooth cariogenicic bacteria. Enterococcus faecalis and Lactobacillus acidophilus were the most resistant and susceptible bacteria to this nanoparticle, respectively, while the antimicrobial effects of Nigella sativa nanoemulsion were weaker than the chlorhexidine mouthwash.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.