Abstract

Noninvasive evaluation of glioma is of great help for clinical practice. In this study, we investigated the utility of 13N-ammonia in the evaluation of untreated gliomas and compared the results with that of 18F-FDG. Forty-five consecutive patients with final diagnosis of glioma were included in this study. PET/CT imaging was performed for all of them with both 18F-FDG and 13N-ammonia as tracers. Imaging results were analyzed by tumor-to-gray matter (T/G) ratios. Receiver operating characteristic curve analysis was conducted to determine the optimal T/G cutoff values of each tracer between low-grade and high-grade gliomas. Forty-eight separate lesions were identified in all (grade II, n = 16; grade III, n = 12; and grade IV, n = 20). Twenty-nine out of 32 high-grade lesions (91%) showed higher uptakes than normal gray matter with N-ammonia in comparison with the result of 21 lesions (66%) with 18F-FDG. The optimal T/G cutoff values for 18F-FDG and 13N-ammonia were 0.64 and 0.86 separately with the area under each curve 0.910 and 0.943. The sensitivity and specificity of predicting high-grade gliomas with optimal cutoff values were 83% and 93% for 18F-FDG and 94% and 94% for 13N-ammonia, respectively. 13N-Ammonia is superior to 18F-FDG not only in separating low-grade gliomas from high-grade ones but also in the detection of high-grade gliomas for better tumor to normal gray matter contrast.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.