Abstract

Both aflatoxin B1 (AFB1) and a hydroxylated metabolite, aflatoxin M1 (AFM1), were potent cytotoxins and genotoxins to primary cultures of rat hepatocytes. However, AFB1 stimulated the release of lactate dehydrogenase into the culture medium and the loss of viable cells from the monolayer at lower doses than did AFM1. The lowest toxic doses of AFB1 and AFM1 were 0·05–0·1 and 0·6 μg/ culture, respectively. Genotoxicity, determined by an assay for stimulation of DNA repair, was apparent at lower doses than was cytotoxicity. AFB1 was again more potent than AFM1, stimulating DNA repair at 0·025 μg/culture. compared to the lowest genotoxic dose of AFM1 of 0·05 μg/culture. At higher doses (1·2–2·4 μg/culture) the responses due to both aflatoxins in the cytotoxicity and DNA-repair assays were approximately equal. The metabolism of a low dose (c. 0·17 μg/culture) of [14C]AFB1 and [3H]AFM1 by cultured hepatocytes differed significantly. After 1 hr, 50% of the [14C]AFB1 remained unchanged in the culture medium, whereas about 18 hr were required for the same amount of [3H]AFM1 metabolism to occur. [14C]AFB1 was metabolized to AFM1, to polar metabolites recovered in the aqueous phase after chloroform extraction, and to metabolites covalently bound to hepatocyte macromolecules. [3H]AFM1 was also metabolized to polar metabolites and to forms bound to macromolecules. The degree of covalent binding of the aflatoxins correlated with their cytotoxicity and genotoxicity at lower doses. After a 24-hr incubation, 12·5% of the dose of [14C]AFB1 was covalently bound to macromolecules compared to 1·5% of [3H]AFM1. Although AFM1 was less potent than AFB1 in cytotoxicity, DNA-repair and covalent-binding assays using primary cultures of hepatocytes, AFM1 was still active at relatively low doses and therefore is probably a potent hepatotoxin in vivo.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call