Abstract
The compactness of a graph measures the space complexity of its shortest path routing tables. Each outgoing edge of a node x is assigned a (pairwise disjoint) set of addresses, such that the unique outgoing edge containing the address of a node y is the first edge of a shortest path from x to y. The complexity measure used in the context of interval routing is the minimum number of intervals of consecutive addresses needed to represent each such set, minimized over all possible choices of addresses and all choices of shortest paths. This paper establishes asymptotically tight bounds of n/4on the compactness of an n-node graph. More specifically, it is shown that every n-node graph has compactness at most n/4+o(n), and conversely, there exists an n-node graph whose compactness is n/4 - o(n). Both bounds improve upon known results. (A preliminary version of the lower bound has been partially published in Proceedings of the 22nd International Symposium on Mathematical Foundations of Computer Science, Lecture Notes in Comput. Sci. 1300, pp. 259--268, 1997.)
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.