Abstract

This paper aims to improve the collaboration ability and stability of amphibious spherical robots (ASRs). According to our previous researches, robots have no communication or control stability module. This study designed a new torque gyro control stability and an artificial electronic communication module devoted to allowing the robot to both move on land and underwater, which used a gyro sensor to design a closed-loop control module to perform terrestrial locomotion efficiently. Regarding the spherical robot mechanical structure and dynamic model, the robot communication module is designed, and the physical robot is set up to complete specific experiments. In addition, it is necessary to analyze the underwater and land motion to evaluate the performance of the robot stability motion and communication module, which includes the gait stability and velocity, and predicts the effects of the key parameters, such as electrode distance and emitter current of the amphibious spherical robot when it moves in underwater or on land. We also characterize communicate performance of the robots in still water with obstacles and natural water conditions.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call