Abstract
This article presents a computable criterion for the existence of a common invariant subspace of $n\times n$ complex matrices $A_{1}, \dots ,A_{s}$ of a fixed dimension $1\leq d\leq n$. The approach taken in the paper is model-theoretic. Namely, the criterion is based on a constructive proof of the renowned Tarski's theorem on quantifier elimination in the theory $\ACF$ of algebraically closed fields. This means that for an arbitrary formula $\varphi$ of the language of fields, a quantifier-free formula $\varphi'$ such that $\varphi\lra\varphi'$ in $\ACF$ is given explicitly. The construction of $\varphi'$ is elementary and based on the effective Nullstellensatz. The existence of a common invariant subspace of $A_{1},\dots,A_{s}$ of dimension $d$ can be expressed in the first-order language of fields, and hence, the constructive version of Tarski's theorem yields the criterion. In addition, some applications of this criterion in quantum information theory are discussed.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.