Abstract

To assess the effects of sevoflurane, the most commonly used inhalation anesthetic, on apoptosis and beta-amyloid protein (Abeta) levels in vitro and in vivo. Subjects Naive mice, H4 human neuroglioma cells, and H4 human neuroglioma cells stably transfected to express full-length amyloid precursor protein. Human H4 neuroglioma cells stably transfected to express full-length amyloid precursor protein were exposed to 4.1% sevoflurane for 6 hours. Mice received 2.5% sevoflurane for 2 hours. Caspase-3 activation, apoptosis, and Abeta levels were assessed. Sevoflurane induced apoptosis and elevated levels of beta-site amyloid precursor protein-cleaving enzyme and Abeta in vitro and in vivo. The caspase inhibitor Z-VAD decreased the effects of sevoflurane on apoptosis and Abeta. Sevoflurane-induced caspase-3 activation was attenuated by the gamma-secretase inhibitor L-685,458 and was potentiated by Abeta. These results suggest that sevoflurane induces caspase activation which, in turn, enhances beta-site amyloid precursor protein-cleaving enzyme and Abeta levels. Increased Abeta levels then induce further rounds of apoptosis. These results suggest that inhalational anesthetic sevoflurane may promote Alzheimer disease neuropathogenesis. If confirmed in human subjects, it may be prudent to caution against the use of sevoflurane as an anesthetic, especially in those suspected of possessing excessive levels of cerebral Abeta.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.