Abstract

AbstractHereditary elliptocytosis (HE) and hereditary pyropoikilocytosis (HPP) are common disorders of erythrocyte shape primarily because of mutations in spectrin. The most common HE/HPP mutations are located distant from the critical αβ-spectrin tetramerization site, yet still interfere with formation of spectrin tetramers and destabilize the membrane by unknown mechanisms. To address this question, we studied the common HE-associated mutation, αL260P, in the context of a fully functional mini-spectrin. The mutation exhibited wild-type tetramer binding in univalent binding assays, but reduced binding affinity in bivalent-binding assays. Biophysical analyses demonstrated the mutation-containing domain was only modestly structurally destabilized and helical content was not significantly changed. Gel filtration analysis of the αL260P mini-spectrin indicated more compact structures for dimers and tetramers compared with wild-type. Chemical crosslinking showed structural changes in the mutant mini-spectrin dimer were primarily restricted to the vicinity of the αL260P mutation and indicated large conformational rearrangements of this region. These data indicate the mutation increased the stability of the closed dimer state, thereby reducing tetramer assembly and resulting in membrane destabilization. These results reveal a novel mechanism of erythrocyte membrane destabilization that could contribute to development of therapeutic interventions for mutations in membrane proteins containing spectrin-type domains associated with inherited disease.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.