Abstract
The research on pharmacology usually focuses on the structure-activity relationships of drugs, such as antibiotics, to enhance their activity, but often ignores their optical properties. However, investigating the photophysical properties of drugs is of great significance because they could be used to in situ visualize their positions and help us to understand their working metabolism. In this work, we identified a class of commercialized antibiotics, such as levofloxacin, norfloxacin, and moxifloxacin (MXF) hydrochloride, featuring the unique aggregation-induced emission (AIE) characteristics. By taking advantage of their AIE feature, antibiotic metabolism in cells could be in situ visualized, which clearly shows that the luminescent aggregates accumulate in the lysosomes. Moreover, after a structure-activity relationship study, we found an ideal site of MXF to be modified with a triphenylphosphonium and an antibiotic derivative MXF-P was prepared, which is able to specifically differentiate bacterial species after only 10min of treatment. Moreover, MXF-P shows highly effective broad-spectrum antibacterial activity, excellent therapeutic effects and biosafety for S. aureus-infected wound recovery. Thus, this work not only discovers the multifunctionalities of the antibiotics but also provides a feasible strategy to make the commercialized drugs more powerful.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.