Abstract

Auscultation with stethoscope has been an essential tool for diagnosing the patients with respiratory disease. Although auscultation is non-invasive, rapid, and inexpensive, it has intrinsic limitations such as inter-listener variability and subjectivity, and the examination must be performed face-to-face. Conventional stethoscope could not record the respiratory sounds, so it was impossible to share the sounds. Recent innovative digital stethoscopes have overcome the limitations and enabled clinicians to store and share the sounds for education and discussion. In particular, the recordable stethoscope made it possible to analyze breathing sounds using artificial intelligence, especially based on neural network. Deep learning-based analysis with an automatic feature extractor and convoluted neural network classifier has been applied for the accurate analysis of respiratory sounds. In addition, the current advances in battery technology, embedded processors with low power consumption, and integrated sensors make possible the development of wearable and wireless stethoscopes, which can help to examine patients living in areas of a shortage of doctors or those who need isolation. There are still challenges to overcome, such as the analysis of complex and mixed respiratory sounds and noise filtering, but continuous research and technological development will facilitate the transition to a new era of a wearable and smart stethoscope.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.