Abstract

The comet assay in Drosophila has been used in the last few years to study DNA damage responses (DDR) in different repair-mutant strains and to compare them to analyze DNA repair. We have used this approach to study interactions between DNA repair pathways in vivo. Additionally, we have implemented an ex vivo comet assay, in which nucleoids from treated and untreated cells were incubated ex vivo with cell-free protein extracts from individuals with distinct repair capacities. Four strains were used: wild-type OregonK (OK), nucleotide excision repair mutant mus201, dmPolQ protein mutant mus308, and the double mutant mus201;mus308. Methyl methanesulfonate (MMS) was used as a genotoxic agent. Both approaches were performed with neuroblasts from third-instar larvae; they detected the effects of the NER and dmPolQ pathways on the DDR to MMS and that they act additively in this response. Additionally, the ex vivo approach quantified that mus201, mus308, and the double mutant mus201;mus308 strains presented, respectively, 21.5%, 52.9%, and 14.8% of OK strain activity over MMS-induced damage. Considering the homology between mammals and Drosophila in repair pathways, the detected additive effect might be extrapolated even to humans, demonstrating that Drosophila might be an excellent model to study interactions between repair pathways.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.