Abstract

The comet assay methodology was used to monitor nuclear changes occurring in MRC5 human fibroblasts during transition from young to senescent cultures and to study heterogeneity of senescent populations. Nuclear morphology and size, DNA content per nucleus, and DNA damage (basal strand break, total damage, and oxidized base levels) were evaluated; moreover, visually identified large and small nuclei were analyzed separately and arranged in classes of increasing DNA damage. Oxidized base levels were definitely lower in young versus senescent fibroblasts of which, however, a significant proportion showed negligible DNA damage. Nuclear size enlargement accompanying senescence was almost equally influenced by cell ploidy increase and also by a chromatin decondensation process involving diploid cells. It is noteworthy that DNA damage in senescent fibroblasts correlated significantly to nuclear size, but not to DNA content. The comet assay allowed us to identify different senescent phenotypes and to investigate changes in nuclear features and/or DNA damage irrespective of time elapsed in culture.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.