Abstract

Research on synthetic jet fuels production and combustion has recently gained importance because they could help addressing security of supply and sustainable air transportation challenges. The combustion of a 100% Gas to Liquid from Shell (C10.45H23.06; M=148.44 g.mol−1; H/C=2.20; density=737.7 g L−1), a 100% vol. Coal to Liquid from Sasol (C11.06H21.6; M=154.32 g mol−1; H/C=1.95; density= 815.7 g L−1) and surrogates composed of various concentrations of n-decane iso-octane, n-propylcyclohexane, n-propylbenzene, and decalin, were studied in a jet-stirred reactor under the same conditions (temperature, 550–1150 K; pressure, 10 bar; equivalence ratio, 0.5–2). Comparison of these results helped designing optimum surrogate model fuels for the chemical kinetic computations. For simulating the kinetics of oxidation of the synthetic fuels we used new surrogates consisting of mixtures of n-decane, iso-octane, 2-methylheptane, 3-methylheptane, decalin, n-propylcyclohexane, n-propylbenzene, and tetralin. The detailed chemical kinetic reaction mechanism proposed here consisted of 2430 species reacting in 10962 reversible reactions. It was validated using the entire experimental database obtained previously in our laboratory and in the present work. The current chemical kinetic model was also tested for the auto-ignition under shock tubes using data from the literature. Kinetic computations involving reaction paths analyses and sensitivity analyses were used to interpret the results.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.