Abstract

Abstract We present the first effort to aggregate, homogenize, and uniformly model the combined ultraviolet, optical, and near-infrared data set for the electromagnetic counterpart of the binary neutron star merger GW170817. By assembling all of the available data from 18 different papers and 46 different instruments, we are able to identify and mitigate systematic offsets between individual data sets and to identify clear outlying measurements, with the resulting pruned and adjusted data set offering an opportunity to expand the study of the kilonova. The unified data set includes 647 individual flux measurements, spanning 0.45–29.4 days post-merger, and thus has greater constraining power for physical models than any single data set. We test a number of semi-analytical models and find that the data are well modeled with a three-component kilonova model: a “blue” lanthanide-poor component ( cm2 g−1) with and an intermediate opacity “purple” component ( cm2 g−1) with and and a “red” lanthanide-rich component ( cm2 g−1) with and . We further explore the possibility of ejecta asymmetry and its impact on the estimated parameters. From the inferred parameters we draw conclusions about the physical mechanisms responsible for the various ejecta components, the properties of the neutron stars, and, combined with an up-to-date merger rate, the implications for r-process enrichment via this channel. To facilitate future studies of this keystone event we make the unified data set and our modeling code public.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.