Abstract

The natural environment is a complex system, and there is never only one kind of nanomaterial entering the environment. However, many studies only considered the plant toxicity of one kind of nanomaterial and do not consider the influence of two or more kinds of nanomaterials on plant toxicity. Multi-walled carbon nanotubes (MWCNTs) and zinc oxide nanoparticles (ZnO NPs) are two common and widely used nanomaterials in water environment, so these two kinds of nanomaterials were chosen to explore the effects of their combined toxicity on cabbage. This study investigated the toxicity of MWCNTs combined with ZnO NPs on cabbage by measuring the length of roots and stems, chlorophyll content, oxidative stress, antioxidant enzyme activity, metal element content, and root scanning electron microscopy. The toxicity of single MWCNTs toward cabbage was attributed to direct oxidative damage, while the toxicity of single ZnO NPs toward cabbage was due to the high level of zinc concentration. Moreover, ZnO NPs (10 mg/L) ameliorated MWCNTs toxicity toward cabbage by improving the activity of antioxidant enzymes. ZnO NPs (50 and 100 mg/L) because of the high content of zinc disrupted the balance of other metals in the plant and increased the toxicity of MWCNTs. In conclusion, the combined toxicity of different concentrations and types of nanomaterials should be considered for a more accurate assessment of environmental risks.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call