Abstract
In this paper, we consider the combined quasineutral and low Mach number limit of compressible Euler–Poisson system coupled to a magnetic field. We prove that, as the Debye length and the Mach number tend to zero simultaneously in some way, the solution of compressible Euler–Poisson system coupled to a magnetic field will converge to that of ideal incompressible magnetohydrodynamic equations with a sharp convergence rate.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.