Abstract
Understanding how cellular damage produced by high-linear energy transfer (LET) radiation interacts with that produced by low-LET is important both in radiation therapy and in evaluating risk. To study such interactions, rat lung epithelial cells (LEC) were grown on Mylar films and exposed to both X-rays and alpha-particles, separately or simultaneously. Cell killing, and the numbers of binucleated cells and micronuclei, were measured as indicators of damage. X-rays and alpha-particles given separately caused dose-related increases in cell cycle time, with alpha-particles producing greater mitotic delay than X-rays. Damage from alpha-particles and X-rays given simultaneously did not interact to alter further the cell cycle. Cell survival data following exposure to X-rays and alpha-particles, combined or individually, were fitted by linear-quadratic models. Survival curves following exposure to alpha-particles only, or to 1.0 Gy alpha-particles plus graded X-ray doses, were adequately described using only the linear (alpha) term of a linear-quadratic model with alpha coefficients of 0.9 +/- 0.04 and 1.03 +/- 0.18 Gy-1, respectively. Survival following exposure to X-rays only or to 0.06 Gy alpha-particles combined with X-rays was best fitted using both alpha and beta terms of the linear-quadratic model (0.12 +/- 0.03)D + (0.007 +/- 0.002)D2 and (0.57 +/- 0.08)D + (0.3 +/- 0.02)D2, respectively. The numbers of micronuclei produced by exposure to alpha-particles or X-rays alone increased linearly with dose, with slopes of 0.48 +/- 0.07 and 0.19 +/- 0.05 micronuclei/binucleated cell per Gy for alpha and X-rays, respectively. Simultaneous exposure to graded levels of X-rays and a constant alpha dose of either 1.0 or 0.06 Gy increased micronuclei frequency, with a slope of 0.74 +/- 0.05 or 0.58 +/- 0.04 micronuclei/binucleated cell per Gy, respectively. These slopes are similar to that produced by alpha-particles alone. These studies demonstrated that both cell killing and the induction of micronuclei were increased by combined exposures compared with that predicted for separate exposures.
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.