Abstract

ABSTRACTIn this study, the effects of cryogenic and boronising treatments on the wear behaviour and microstructure of 1.2344 steel were evaluated. X-ray diffraction analysis and scanning electron microscopy were used to investigate the microstructure, percentage of the retained austenite, and the carbides' morphology. In addition, a micro-hardness test and pin-on-disk wear method were utilised to assess the samples’ wear resistance. The results showed that the use of a cryogenic treatment improved hardness and wear resistance by 25% and 39%, respectively, compared with a quenching - tempering heat treatment. In addition, cryogenic and boronising treatments improved hardness and wear resistance by 228% and 75%, respectively, compared with a quenching - tempering heat treatment. The improvement in the properties of cryogenically treated and boronised-cryogenised samples in comparison with the quenched-tempered ones is due to the transformation of retained austenite to martensite, precipitation of fine carbides, and better carbide distribution. Also, the formation of the Fe2B phase affected the properties of the boronised-cryogenised samples. Moreover, examining the wear levels revealed that the dominant wear mechanism is adhesive and tribochemical wear.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call