Abstract
The aim of this work is to outline in some detail the use of combinatorial algebra in planar quantum field theory. Particular emphasis is given to the relations between the different types of planar Green's functions. The key object is a Hopf algebra which is naturally defined on non-commuting sources, and the fact that its genuine unshuffle coproduct splits into left- and right unshuffle half-coproduts. The latter give rise to the notion of unshuffle bialgebra. This setting allows to describe the relation between planar full and connected Green's functions by solving a simple linear fixed point equation. A modification of this linear fixed point equation gives rise to the relation between planar connected and one-particle irreducible Green's functions. The graphical calculus that arises from this approach also leads to a new understanding of functional calculus in planar QFT, whose rules for differentiation with respect to non-commuting sources can be translated into the language of growth operations on planar rooted trees. We also include a brief outline of our approach in the framework of non-planar theories.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.