Abstract
The aim of this study is to determine the protective effects of vitamin D(3) and dehydroascorbic acid (DHA), a blood-brain barrier transportable form of vitamin C, against ischemia/reperfusion (I/R) injury on a middle cerebral artery occlusion/reperfusion model of brain since reactive oxygen species play an important role in the pathophysiology of I/R injury in brain. In order to examine antioxidant status and lipid peroxidation, we assayed malondialdehyde (MDA) levels as a marker of lipid peroxidation, and reduced glutathione (GSH) and superoxide dismutase (SOD) enzyme activities as free radical scavenging enzymes in cortex and corpus striatum (CS). Wistar albino rats were divided into five equal groups of each consisting of seven rats: control, I/R, I/R + DHA, I/R + vitamin D(3), and I/R + vitamin D(3) + dehydroascorbic acid groups. MDA levels were found to be increased in the I/R group, I/R + DHA, and I/R + vitamin D(3) groups compared with the control group in both cortex and corpus striatum. However, MDA level were found to be significantly decreased in only I/R + vitamin D(3) + DHA group compared with the I/R group in cortex (P < 0.0001). MDA levels were not significantly different in I/R + DHA, and I/R + vitamin D(3) groups compared with the I/R group. GSH and SOD enzyme activities were significantly decreased in I/R, I/R + DHA, and I/R + vitamin D(3) groups compared with the control group in both cortex and corpus striatum (CS) (P < 0.0001). Whereas, both GSH and SOD activity were increased in I/R + vitamin D(3) + DHA group compared with the I/R group in both cortex and CS (P < 0.001 in cortex, P < 0.001 in CS for SOD P < 0.002 in cortex P < 0.03 in CS for GSH). Our results demonstrate that the combination of vitamin D(3) and DHA treatment prevent free radical production and dietary supplementation of vitamin D(3) and DHA which may be useful in the ischemic cerebral vascular diseases.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.