Abstract

The aim of this study was to assess structural indices from high-resolution peripheral quantitative computed tomography (HR-pQCT) images of the human proximal femur along with areal bone mineral density (aBMD) and compare the relationship of these parameters to bone strength in vitro. Thirty-one human proximal femur specimens (8 men and 23 women, median age 74years, range 50-89) were examined with HR-pQCT at four regions of interest (femoral head, neck, major and minor trochanter) with 82μm and in a subgroup (n=17) with 41μm resolution. Separate analyses of cortical and trabecular geometry, volumetric BMD (vBMD), and microarchitectural parameters were obtained. In addition, aBMD by dual-energy X-ray absorptiometry (DXA) was performed at conventional hip regions and maximal compressive strength (MCS) was determined in a side-impact biomechanical test. Twelve cervical and 19 trochanteric fractures were confirmed. Geometry, vBMD, microarchitecture, and aBMD correlated significantly with MCS, with Spearman's correlation coefficients up to 0.77, 0.89, 0.90, and 0.85 (P<0.001), respectively. No differences in these correlations were found using 41μm compared to 82μm resolution. In multiple regression analysis of MCS, a combined model (age- and sex-adjusted) with aBMD and structural parameters significantly increased R (2) values (up to 0.90) compared to a model holding aBMD alone (R (2) up to 0.78) (P<0.05). Structural parameters and aBMD are equally related to MCS, and both cortical and trabecular structural parameters obtained from HR-pQCT images hold information on bone strength complementary to that of aBMD.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call