Abstract
The nucleation and crystallization of poly(ethylene oxide) (PEO) and poly(e-caprolactone) (PCL) in the PEO/PCL blends have been investigated by means of optical microscopy (OM) and differential scanning calorimetry (DSC). During the isothermal or nonisothermal crystallization process, when the adjacent PEO is in the molten state, PCL nucleation preferentially occurs at the PEO and PCL interface; after the crystallization of the adjacent PEO, much more PCL nuclei form on the surface of the PEO crystal. However, PEO crystallizes normally and no interfacial nucleation occurs in the blend. The concentration fluctuation caused by liquid–liquid phase separation (LLPS) induces the motion of PEO and PCL chains through interdiffusion and possible orientation of chain segments. The oriented PEO chain segments can assist PCL nucleation, and the heterogeneous nucleation ability of PEO increases with the orientation of PEO chains. Oriented PCL chain segments have no heterogeneous nucleation ability on PEO. It is postulated that the interfacial nucleation of PCL in the PEO/PCL blend follows the combination of “fluctuation-assisted crystallization” and “interface-assisted crystallization” mechanisms.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.