Abstract
Islet transplantation is an effective means of treating severe type 1 diabetes in patients with life-threatening hypoglycemia. Improvements in glycemic control with correction of HbA1C enhance quality of life irrespective of insulin independence. By antagonizing the Natural Killer Group 2, member D (NKG2D) receptor expression on NK and CD8+ T cells, in combination with blocking CTLA-4 binding sites, we demonstrate a significant delay of graft rejection in islet allotransplant. Anti-NKG2D combined with CTLA-4 Ig (n = 15) results in prolonged allograft survival, with 84.6 ± 10% of the recipients displaying insulin independence compared to controls (n = 10, p < 0.001). The effect of combination therapy on graft survival is superior to treatments alone (CTLA-4 Ig vs. combination p = 0.024, anti-NKG2D vs. combination p < 0.001) indicating an interaction between these pathways. In addition, combination treatment also improves glucose tolerance when compared to controls (n = 10, p = 0.018). Histologically, NKG2D+ cells were significantly decreased within the allograft after 7 days of combination treatment (n = 6, p = 0.029). T cell proliferation was significantly reduced with anti-NKG2D therapy and CD8+ T cell daughter fractions were also significantly decreased with mAb and combination treatment when measured by in vitro mixed lymphocyte reaction (n = 5, p = 0.015, p = 0.005 and p = 0.048). These results demonstrate that inhibition of NKG2D receptors and costimulatory pathways enhance islet allograft survival.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.