Abstract

Learning powerful discriminative features is the key for machine fault diagnosis. Most existing methods based on convolutional neural network (CNN) have achieved promising results. However, they primarily focus on global features derived from sample signals and fail to explicitly mine relationships between signals. In contrast, graph convolutional network (GCN) is able to efficiently mine data relationships by taking graph data with topological structure as input, making them highly effective for feature representation in non-Euclidean space. In this article, to make good use of the advantages of CNN and GCN, we propose a graph attentional convolutional neural network (GACNN) for effective intelligent fault diagnosis, which includes two subnetworks of fully CNN and GCN to extract the multilevel features information, and uses Efficient Channel Attention (ECA) attention mechanism to reduce information loss. Extensive experiments on three datasets show that our framework improves the representation ability of features and fault diagnosis performance, and achieves competitive accuracy against other approaches. And the results show that GACNN can achieve superior performance even under a strong background noise environment.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.