Abstract
The theoretical studies of charged particle induced reactions are important to improve and study the radioisotope production, especially in reactions where the experimental data are incomplete or insufficient. In this study, cross section of alpha induced of 92,94,95Mo isotopes are calculated and analyzed by using different alpha optical model potentials and nuclear level density models with TALYS code. The effects of alpha optical model potentials and nuclear level density are analyzed separately and together for each reaction. To determine the best combination of models, chi-squared values are calculated for all combination cases. The commonly used program is TALYS to calculate the reaction cross section. For the calculations, the latest version of TALYS nuclear code version 1.96 is used. The experimental data are taken carefully for all reactions from experimental nuclear reaction data base (EXFOR). The obtained results are compared with these data and discussed. A good agreement between the calculated and experimental data is clearly presented for all analyzed reactions. It is seen from the results that alpha optical model potentials and nuclear level density models have an effective role on cross section calculations of alpha induced reactions.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.