Abstract
In the Colonel Blotto game, two players simultaneously distribute forces across n battlefields. Within each battlefield, the player that allocates the higher level of force wins. The payoff of the game is the proportion of wins on the individual battlefields. An equilibrium of the Colonel Blotto game is a pair of n-variate distributions. This paper characterizes the unique equilibrium payoffs for all (symmetric and asymmetric) configurations of the players’ aggregate levels of force, characterizes the complete set of equilibrium univariate marginal distributions for most of these configurations, and constructs entirely new and novel equilibrium n-variate distributions.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.