Abstract

A collocation method with trigonometric trial functions is presented form-order non-linear functional differential equations with periodicity boundary conditions. In general, uniform approximation of an isolated solution and of its firstm−1 derivatives is achieved, while them-derivative is approximated in mean square. In some special cases we have also the uniform approximation of them-derivative. The solution of then-th non-linear collocation equation may be approximated by Newton's iteration with an arbitrary starting point belonging to a suitable neighbourhood of an isolated solution, for alln>n0 withn0 large enough.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.