Abstract

The Chebyshev cardinal functions based on the Lobatto grid are introduced and used for the first time to solve the fractional delay differential equations. The presented algorithm is based on the collocation method, which is applied to solve the corresponding Volterra integral equation of the given equation. In the employed method, the derivative and fractional integral operators are expressed in the Chebyshev cardinal functions, which reduce the computational load. The method is characterized by its simplicity, adherence to boundary conditions, and high accuracy. An exact analysis has been provided to demonstrate the convergence of the scheme, and illustrative examples validate our investigation.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.